2,293 research outputs found

    Map4rdf - Faceted Browser for Geospatial Datasets

    Get PDF
    Recently we have seen a large increase in the amount of geospatial data that is being published using RDF and Linked Data principles. Eorts such as the W3C Geo XG, and most recently the GeoSPARQL initiative are providing the necessary vocabularies to pub- lish this kind of information on the Web of Data. In this context it is necessary to develop applications that consume and take advantage of these geospatial datasets. In this paper we present map4rdf, a faceted browsing tool for exploring and visualizing RDF datasets enhanced with geospatial information

    Latent solitons, black strings, black branes, and equations of state in Kaluza-Klein models

    Full text link
    In Kaluza-Klein models with an arbitrary number of toroidal internal spaces, we investigate soliton solutions which describe the gravitational field of a massive compact object. We single out the physically interesting solution corresponding to a point-like mass. For the general solution we obtain equations of state in the external and internal spaces. These equations demonstrate that the point-like mass soliton has dust-like equations of state in all spaces. We also obtain the PPN parameters, which give the possibility to obtain the formulas for perihelion shift, deflection of light and time delay of radar echoes. Additionally, the gravitational experiments lead to a strong restriction on the parameter of the model: τ=(2.1±2.3)×105\tau = -(2.1\pm 2.3)\times 10^{-5}. The point-like mass solution contradicts this restriction. The condition τ=0\tau=0 satisfies the experimental limitation and defines a new class of solutions which are indistinguishable from general relativity. We call such solutions latent solitons. Black strings and black branes belong to this class. Moreover, the condition of stability of the internal spaces singles out black strings/branes from the latent solitons and leads uniquely to the black string/brane equations of state pi=ϵ/2p_i=-\epsilon/2, in the internal spaces and to the number of the external dimensions d0=3d_0=3. The investigation of multidimensional static spherically symmetric perfect fluid with dust-like equation of state in the external space confirms the above results.Comment: 8 pages, Revtex4, no figures, minor changes adde

    Kaluza-Klein models: can we construct a viable example?

    Full text link
    In Kaluza-Klein models, we investigate soliton solutions of Einstein equation. We obtain the formulas for perihelion shift, deflection of light, time delay of radar echoes and PPN parameters. We find that the solitonic parameter k should be very big: |k|\geq 2.3\times10^4. We define a soliton solution which corresponds to a point-like mass source. In this case the soliton parameter k=2, which is clearly contrary to this restriction. Similar problem with the observations takes place for static spherically symmetric perfect fluid with the dust-like equation of state in all dimensions. The common for both of these models is the same equations of state in our three dimensions and in the extra dimensions. All dimensions are treated at equal footing. To be in agreement with observations, it is necessary to break the symmetry between the external/our and internal spaces. It takes place for black strings which are particular examples of solitons with k\to \infty. For such k, black strings are in concordance with the observations. Moreover, we show that they are the only solitons which are at the same level of agreement with the observations as in general relativity. Black strings can be treated as perfect fluid with dust-like equation of state p_0=0 in the external/our space and very specific equation of state p_1=-(1/2)\epsilon in the internal space. The latter equation is due to negative tension in the extra dimension. We also demonstrate that dimension 3 for the external space is a special one. Only in this case we get the latter equation of state. We show that the black string equations of state satisfy the necessary condition of the internal space stabilization. Therefore, black strings are good candidates for a viable model of astrophysical objects (e.g., Sun) if we can provide a satisfactory explanation of negative tension for particles constituting these objects.Comment: 11 pages, Revtex4, no figures, appendix and references adde

    Orientational properties of nematic disclinations

    Full text link
    Topological defects play a pivotal role in the physics of liquid crystals and represent one of the most prominent and well studied aspects of mesophases. While in two-dimensional nematics, disclinations are traditionally treated as point-like objects, recent experimental studies on active nematics have suggested that half-strength disclinations might in fact possess a polar structure. In this article, we provide a precise definition of polarity for half-strength nematic disclinations, we introduce a simple and robust method to calculate this quantity from experimental and numerical data and we investigate how the orientational properties of half-strength disclinations affect their relaxational dynamics.Comment: 6 pages, 5 figures, supplementary movies at http://wwwhome.lorentz.leidenuniv.nl/~giomi/sup_mat/20150720

    Multiphoton Discrete Fractional Fourier Dynamics in Waveguide Beam Splitters

    Get PDF
    We demonstrate that when a waveguide beam splitter (BS) is excited by N indistinguishable photons, the arising multiphoton states evolve in a way as if they were coupled to each other with coupling strengths that are identical to the ones exhibited by a discrete fractional Fourier system. Based on the properties of the discrete fractional Fourier transform, we then derive a multiphoton suppression law for 50/50 BSs, thereby generalizing the Hong-Ou-Mandel effect. Furthermore, we examine the possibility of performing simultaneous multiphoton quantum random walks by using a single waveguide BS in combination with photon number resolving detectors. We anticipate that the multiphoton lattice-like structures unveiled in this work will be useful to identify new effects and applications of high-dimensional multiphoton states.Comment: Accepted for publication in JOSA B on June 26, 201

    Parallel model exploration for tumor treatment simulations

    Get PDF
    Abstract Computational systems and methods are often being used in biological research, including the understanding of cancer and the development of treatments. Simulations of tumor growth and its response to different drugs are of particular importance, but also challenging complexity. The main challenges are first to calibrate the simulators so as to reproduce real-world cases, and second, to search for specific values of the parameter space concerning effective drug treatments. In this work, we combine a multi-scale simulator for tumor cell growth and a genetic algorithm (GA) as a heuristic search method for finding good parameter configurations in reasonable time. The two modules are integrated into a single workflow that can be executed in parallel on high performance computing infrastructures. In effect, the GA is used to calibrate the simulator, and then to explore different drug delivery schemes. Among these schemes, we aim to find those that minimize tumor cell size and the probability of emergence of drug resistant cells in the future. Experimental results illustrate the effectiveness and computational efficiency of the approach.This work has received funding from the EU Horizon 2020 RIA program INFORE under grant agreement No 825070Peer ReviewedPostprint (author's final draft

    Volumetric analysis of the piriform cortex in temporal lobe epilepsy

    Full text link
    The piriform cortex, at the confluence of the temporal and frontal lobes, generates seizures in response to chemical convulsants and electrical stimulation. Resection of more than 50% of the piriform cortex in anterior temporal lobe resection for refractory temporal lobe epilepsy (TLE) was associated with a 16-fold higher chance of seizure freedom. The objectives of the current study were to implement a robust protocol to measure piriform cortex volumes and to quantify the correlation of these volumes with clinical characteristics of TLE. Sixty individuals with unilateral TLE (33 left) and 20 healthy controls had volumetric analysis of left and right piriform cortex and hippocampi. A protocol for segmenting and measuring the volumes of the piriform cortices was implemented, with good inter-rater and test-retest reliability. The right piriform cortex volume was consistently larger than the left piriform cortex in both healthy controls and patients with TLE. In controls, the mean volume of the right piriform cortex was 17.7% larger than the left, and the right piriform cortex extended a mean of 6 mm (Range: -4 to 12) more anteriorly than the left. This asymmetry was also seen in left and right TLE. In TLE patients overall, the piriform cortices were not significantly smaller than in controls. Hippocampal sclerosis was associated with decreased ipsilateral and contralateral piriform cortex volumes. The piriform cortex volumes, both ipsilateral and contralateral to the epileptic temporal lobe, were smaller with a longer duration of epilepsy. There was no significant association between piriform cortex volumes and the frequency of focal seizures with impaired awareness or the number of anti-seizure medications taken. Implementation of robust segmentation will enable consistent neurosurgical resection in anterior temporal lobe surgery for refractory TLE.

    Molecular Gas in Infrared Ultraluminous QSO Hosts

    Full text link
    We report CO detections in 17 out of 19 infrared ultraluminous QSO (IR QSO) hosts observed with the IRAM 30m telescope. The cold molecular gas reservoir in these objects is in a range of 0.2--2.1×1010M\times 10^{10}M_\odot (adopting a CO-to-H2{\rm H_2} conversion factor αCO=0.8M(Kkms1pc2)1\alpha_{\rm CO}=0.8 M_\odot {\rm (K km s^{-1} pc^2)^{-1}}). We find that the molecular gas properties of IR QSOs, such as the molecular gas mass, star formation efficiency (LFIR/LCOL_{\rm FIR}/L^\prime_{\rm CO}) and the CO (1-0) line widths, are indistinguishable from those of local ultraluminous infrared galaxies (ULIRGs). A comparison of low- and high-redshift CO detected QSOs reveals a tight correlation between LFIR_{\rm FIR} and LCO(10)L^\prime_{\rm CO(1-0)} for all QSOs. This suggests that, similar to ULIRGs, the far-infrared emissions of all QSOs are mainly from dust heated by star formation rather than by active galactic nuclei (AGNs), confirming similar findings from mid-infrared spectroscopic observations by {\it Spitzer}. A correlation between the AGN-associated bolometric luminosities and the CO line luminosities suggests that star formation and AGNs draw from the same reservoir of gas and there is a link between star formation on \sim kpc scale and the central black hole accretion process on much smaller scales.Comment: 30 pages, 9 figures, accepted for publication in The Astrophysical Journa

    Bounce and cyclic cosmology in extended nonlinear massive gravity

    Full text link
    We investigate non-singular bounce and cyclic cosmological evolutions in a universe governed by the extended nonlinear massive gravity, in which the graviton mass is promoted to a scalar-field potential. The extra freedom of the theory can lead to certain energy conditions violations and drive cyclicity with two different mechanisms: either with a suitably chosen scalar-field potential under a given Stuckelberg-scalar function, or with a suitably chosen Stuckelberg-scalar function under a given scalar-field potential. Our analysis shows that extended nonlinear massive gravity can alter significantly the evolution of the universe at both early and late times.Comment: 20 pages, 5 figures, version published at JCA

    Current Challenges for the Early Detection of Alzheimer's Disease: Brain Imaging and CSF Studies

    Get PDF
    The development of prevention therapies for Alzheimer's disease (AD) would greatly benefit from biomarkers that are sensitive to the subtle brain changes that occur in the preclinical stage of the disease. Reductions in the cerebral metabolic rate of glucose (CMRglc), a measure of neuronal function, have proven to be a promising tool in the early diagnosis of AD. In vivo brain 2-[18F]fluoro-2-Deoxy-D-glucose-positron emission tomography (FDG-PET) imaging demonstrates consistent and progressive CMRglc reductions in AD patients, the extent and topography of which correlate with symptom severity. There is increasing evidence that hypometabolism appears during the preclinical stages of AD and can predict decline years before the onset of symptoms. This review will give an overview of FDG-PET results in individuals at risk for developing dementia, including: presymptomatic individuals carrying mutations responsible for early-onset familial AD; patients with Mild Cognitive Impairment (MCI), often a prodrome to late-onset sporadic AD; non-demented carriers of the Apolipoprotein E (ApoE) ε4 allele, a strong genetic risk factor for late-onset AD; cognitively normal subjects with a family history of AD; subjects with subjective memory complaints; and normal elderly followed longitudinally until they expressed the clinical symptoms and received post-mortem confirmation of AD. Finally, we will discuss the potential to combine different PET tracers and CSF markers of pathology to improve the early detection of AD
    corecore